What is the most efficient way to loop through dataframes with pandas?
In Python, you have three options to loop through DataFrames with Pandas.
By index (simplest):
>>> for index in df.index:
... print ("df[" + str(index) + "]['B']=" + str(df['B'][index]))
With iterrows (most used):
>>> for index, row in df.iterrows():
... print ("df[" + str(index) + "]['B']=" + str(row['B']))
With itertuples (fastest):
>>> for row in df.itertuples():
... print ("df[" + str(row.Index) + "]['B']=" + str(row.B))
Three options display something like:
df[0]['B']=125
df[1]['B']=415
df[2]['B']=23
df[3]['B']=456
df[4]['B']=189
df[5]['B']=456
df[6]['B']=12
In Python, you have three options to loop through DataFrames with Pandas.
By index (simplest):
>>> for index in df.index:
... print ("df[" + str(index) + "]['B']=" + str(df['B'][index]))
With iterrows (most used):
>>> for index, row in df.iterrows():
... print ("df[" + str(index) + "]['B']=" + str(row['B']))
With itertuples (fastest):
>>> for row in df.itertuples():
... print ("df[" + str(row.Index) + "]['B']=" + str(row.B))
Three options display something like:
df[0]['B']=125
df[1]['B']=415
df[2]['B']=23
df[3]['B']=456
df[4]['B']=189
df[5]['B']=456
df[6]['B']=12
In Python, you have three options to loop through dataframes with Pandas.
By index (simplest):
>>> for index in df.index:
... print ("df[" + str(index) + "]['B']=" + str(df['B'][index]))
With iterrows (most used):
>>> for index, row in df.iterrows():
... print ("df[" + str(index) + "]['B']=" + str(row['B']))
With itertuples (fastest):
>>> for row in df.itertuples():
... print ("df[" + str(row.Index) + "]['B']=" + str(row.B))
Three options display something like:
df[0]['B']=125
df[1]['B']=415
df[2]['B']=23
df[3]['B']=456
df[4]['B']=189
df[5]['B']=456
df[6]['B']=12
In Python, you have three options to loop through dataframes with Pandas.
By index (simplest):
>>> for index in df.index:
... print ("df[" + str(index) + "]['B']=" + str(df['B'][index]))
With iterrows (most used):
>>> for index, row in df.iterrows():
... print ("df[" + str(index) + "]['B']=" + str(row['B']))
With itertuples (fastest):
>>> for row in df.itertuples():
... print ("df[" + str(row.Index) + "]['B']=" + str(row.B))
Three options display something like:
df[0]['B']=125
df[1]['B']=415
df[2]['B']=23
df[3]['B']=456
df[4]['B']=189
df[5]['B']=456
df[6]['B']=12
# | ID | Query | URL | Count |
---|