In Python, how to create NumPy array from a Pandas Dataframe?
In Python, the best way to convert a Pandas Dataframe to a NumPy array is to use the method pandas.DataFrame.to_numpy()
:
>>> import pandas as pd
>>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6]])
>>> df.to_numpy()
array([[1, 2, 3],
[4, 5, 6]])
By default, a view is returned: any modifications made will affect the original.
>>> array = df.to_numpy()
>>> array[0,0] = -1
>>> df
0 1 2
0 -1 2 3
1 4 5 6
To get a copy, use the copy=True
option:df.to_numpy(copy=True)
In Python, the best way to convert a Pandas Dataframe to a NumPy array is to use the method pandas.DataFrame.to_numpy()
:
>>> import pandas as pd
>>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6]])
>>> df.to_numpy()
array([[1, 2, 3],
[4, 5, 6]])
By default, a view is returned: any modifications made will affect the original.
>>> array = df.to_numpy()
>>> array[0,0] = -1
>>> df
0 1 2
0 -1 2 3
1 4 5 6
To get a copy, use the copy=True
option:df.to_numpy(copy=True)
In Python, the best way to convert a Pandas Dataframe to a NumPy array is to use the method pandas.DataFrame.to_numpy()
:
>>> import pandas as pd
>>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6]])
>>> df.to_numpy()
array([[1, 2, 3],
[4, 5, 6]])
By default, a view is returned: any modifications made will affect the original.
>>> array = df.to_numpy()
>>> array[0,0] = -1
>>> df
0 1 2
0 -1 2 3
1 4 5 6
To get a copy, use the copy=True
option:
to_numpy(copy=True)
In Python, the best way to convert a Pandas Dataframe to a NumPy array is to use the method pandas.DataFrame.to_numpy()
:
>>> import pandas as pd
>>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6]])
>>> df.to_numpy()
array([[1, 2, 3],
[4, 5, 6]])
By default, a view is returned: any modifications made will affect the original.
>>> array = df.to_numpy()
>>> array[0,0] = -1
>>> df
0 1 2
0 -1 2 3
1 4 5 6
To get a copy, use the copy=True
option:
to_numpy(copy=True)
# | ID | Query | URL | Count |
---|